

# MOAA 2025: Speed Round

October 11th, 2025

## Rules

- You have 20 minutes to complete 10 problems. Each answer is a nonnegative integer no greater than 1,000,000.
- If  $m$  and  $n$  are relatively prime, then the greatest common divisor of  $m$  and  $n$  is 1.
- No mathematical texts, notes, or online resources of any kind are permitted. Rely on your brain!
- Compasses, protractors, rulers, straightedges, graph paper, blank scratch paper, and writing implements are generally permitted, so long as they are not designed to give an unfair advantage.
- No computational aids (including but not limited to calculators, phones, calculator watches, and computer programs) are permitted on any portion of the MOAA.
- No individual may receive help from any other person, including members of their team. Consulting any other individual is grounds for disqualification.

## How to Compete

- **In Person:** After completing the test, write your answers down in the provided Speed Round answer sheet. The proctors will collect your answer sheets immediately after the test ends.
- **Online:** Log into the Classtime session to access the test. Input all answers directly into the provided form. Select for the test to be handed in once you are ready.

## Special Thanks to Our Sponsors!



## Speed Round Problems

- S1. [2] Compute  $20 \times 25 + \sqrt{2025} + 2025$ .
- S2. [2] Let  $ABCD$  be a square. Let  $M$  be the midpoint of  $CD$ , and  $N$  be the midpoint of  $AM$ . Given that the area of triangle  $BMN$  is 2025, find the length of  $AB$ .
- S3. [2] Find the number of ordered pairs  $(m, n)$  such that  $m + n = 2025$  and  $\gcd(m, n) = 1$ .
- S4. [3] At Areteem, Eddie and Eugenia simultaneously begin reading the same book. Eddie reads 12 pages on day 1, and on each subsequent day he reads 3 more pages than the previous day. Eugenia reads 3 pages on day 1, and on each subsequent day she reads 5 more pages than the previous day. At the end of day  $M$ , they both have 1 page left to read. If the book contains  $N$  pages, find  $N + M$ .
- S5. [3] Let  $S$  be the set of all positive integers  $n$  such that  $n$  and  $n^2$  both end in the same three-digit number  $\underline{a} \underline{b} \underline{c}$ , with  $a > 0$ . Compute the fifth smallest number in  $S$ .
- S6. [4] In regular heptagon  $\mathcal{H}$ , three pairs of vertices are randomly selected, and a line is drawn between every pair. The probability that the three lines drawn bound a triangle with a positive finite area can be written as  $\frac{m}{n}$ , where  $m$  and  $n$  are relatively prime positive integers. Compute  $m + n$ .
- Note: the same pair of vertices can be selected multiple times. For example, one could draw lines  $AB$ ,  $AB$ , and  $AC$ .*
- S7. [5] Square  $ABCD$  has side length 45. Let  $E$  be the midpoint of  $AB$  and let  $F$  be the midpoint of  $EB$ . Lines  $CE$  and  $CF$  intersect line  $BD$  at  $G$  and  $H$ , respectively. Let  $P$  be a point on line  $DA$ . Lines  $CE$  and  $CF$  intersect line  $BP$  at  $X$  and  $Y$ , respectively. Suppose  $XY = 2YB$ . Find the area of triangle  $PGH$ .
- S8. [6] Find the number of ways to label the squares in a  $6 \times 6$  grid satisfying the following conditions:
- Each square contains exactly one number, which is in the set  $\{1, 2, 3, 6\}$ .
  - The numbers within each row and column multiply to 6.
  - Each row and column contains no more than two numbers greater than 1.
- S9. [6] Find the number of nonnegative real numbers  $x$  satisfying the equation

$$\lfloor x \rfloor(x - \lfloor x \rfloor) = \frac{1}{2025}x^2.$$

*Note:  $\lfloor x \rfloor$  denotes the largest integer less than or equal to  $x$ .*

- S10. [7] Let  $ABC$  be an isosceles triangle with  $AB = AC$ , where the length of  $AB$  is an integer. Let point  $P$  lie on side  $AB$  and  $Q$  on side  $AC$  such that  $AP = 17$ ,  $AQ = 11$ , and  $\angle PBC = \angle PQC$ . Given the length of  $CP$  is a positive integer, find the sum of all the possible lengths of  $CP$ .